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We study the culling avalanches which occur after the “death” of a single randomly chosen site in a network
where sites are unstable, and are culled, if they have coordination less than an integer parameter m. Avalanche
distributions are presented for triangular and cubic lattices for values of m where the associated bootstrap
transitions are either first or second order. In second order cases, the culling avalanche distribution is found to
be exponential, while in first order cases it follows a power law. We present an exact relation between culling
avalanches and conventional bootstrap percolation and show that a relation proposed by Manna �Physica A
261, 351 �1998�� can be a good approximation for strongly first order bootstrap transitions but not for
continuous bootstrap transitions.
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I. INTRODUCTION

Bootstrap percolation �BP� �1,2� is a modified form of a
scalar percolation in which a lattice is randomly populated
with a fraction p of present sites; and all sites without a
suitable number of present neighbors are then iteratively re-
moved, or culled. The original motivation for the BP model
came from a consideration of magnetic materials where at-
oms require a minimum connectivity in order to maintain
their magnetic alignment. BP is studied under another name
in graph theory where the infinite cluster in BP corresponds
to the giant m core �3�, and has applications to complex
networks and dense storage arrays �4�.

The smallest possible, elementary, culling avalanches oc-
cur when a single randomly chosen site dies or is “burnt.” By
alternating between burning sites and culling, we analyze the
evolution of elementary bootstrap avalanches beginning with
a complete lattice and ending when the lattice is empty. The
process of random death and culling has a variety of physical
interpretations, including radiation damage of random net-
works of interest in material science, species extinctions in
biological networks, and random outages or failures in com-
munication or transportation networks. There are also rela-
tions to avalanches in magnetic systems which lead to ob-
servable noise, for example, Barkhausen noise in the case of
hysteresis loops. In fact bootstrap percolation is related to the
weak disorder limit of one of the key models of disordered
magnets, the random field Ising model �RFIM� �5�. Another
motivation for studying culling avalanches is to use these
avalanches to rapidly locate and analyze bootstrap percola-
tion critical behavior. This possibility has been raised by
Manna and co-workers �6�. We find that in general it is dif-
ficult to identify the bootstrap threshold using avalanches
alone, though if the transition is strongly first order the ava-
lanche method is effective.

Numerical approaches to bootstrap percolation have to be
subjected to strong scrutiny as metastability effects lead to
very strong finite size scaling corrections to the asymptotic
behavior in some cases. For m�z /2, where z is the lattice

coordination number, the bootstrap percolation threshold is
asymptotically at pc=1 and the percolative transition is
strongly first order. Moreover, for m=z /2+1, interesting rig-
orous mathematical treatments have shown that there are
logarithmic size effects which lead to values of pc that can be
significantly smaller than 1 even for large lattices �7–10�.
Special numerical methods are required to probe these finite
size effects �11,12�. The cases m�z /2 for square, triangular,
and cubic lattices have pc�1 and a continuous bootstrap
transition. These cases are well behaved numerically and are
consistent with conventional percolation, though with shifted
values of the percolation threshold. However, the case
z=m /2 exhibits its asymptotic critical behavior only at very
large lattice sizes so that early numerical work on smaller
lattices, which suggested nonuniversal exponents that depend
on m, is now believed to be unreliable �13–17�. The most
recent, extremely large, simulations support the idea that all
of the continuous bootstrap transitions on these lattices are
universal and in the same universality class as conventional
percolation. The most interesting cases are then m=z /2 and
m=z /2+1 and we present a detailed analysis of elementary
avalanches for these two cases on triangular and cubic lat-
tices.

This paper is organized as follows. In Sec. II we give a
careful discussion of the avalanching bootstrap percolation
�ABP� algorithm, and demonstrate that the avalanche proce-
dure has an exact correspondence with conventional boot-
strap percolation. Section III contains the analysis of elemen-
tary bootstrap avalanches on triangular and simple cubic
lattices. Section IV contains a summary of our main results
and a brief discussion.

II. ALGORITHMS FOR BOOTSTRAP AVALANCHES

For a given lattice an m-culling procedure �mCP� consists
of recursively removing all sites which have fewer than m
neighbors. At the completion of an mCP all sites have at least
m neighbors. This set of sites is called the stable cluster
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configuration �SCC� or m core. This is exactly the same as
the m core in the core percolation problem studied in graph
theory �5�. The sites that have been removed during a boot-
strap avalanche are called the culled sites. An mCP is Abe-
lian �6� in that any culling order can be used as long as only
sites with fewer than m neighbors are culled and at comple-
tion there are no sites with fewer than m neighbors.

A spanning cluster is a cluster in the m core which spans
the sample under consideration. At the onset of bootstrap
percolation a spanning cluster emerges in the SCC. On ran-
dom graphs, a spanning cluster is not well defined. Instead
the emergence of a giant m-core cluster is considered �3�. A
giant cluster is a stable cluster that contains a finite fraction
of the sites of the original lattice. In conventional bootstrap
percolation, the initial configuration consists of a lattice
where each site is present independently of all other sites
with probability p. The mCP is applied to this configuration.
The m-bootstrap percolation threshold is the largest value of
p at which the m core that remains after culling does not
contain a spanning cluster �or a giant cluster�. Connectivity
percolation �18� is the m=1 limit of this procedure. First we
define a procedure which is equivalent to conventional boot-
strap percolation, but which enables a more straightforward
generalization to ABP and also to an understanding of the
correction required to make Manna’s method �6� precise.

The following procedure is equivalent to conventional
bootstrap percolation.

Procedure 1 (BP procedure for finding pc�. For a given
lattice with N sites, randomly assign a unique integer label,
li=1,… ,N, to each site. This initial labeling, or ordering, of
the sites is referred to as the initial configuration �IC�. Set the
index k←0. Then,

�1� k←k+1.
�2� Burn �remove� all sites with labels li�k.
�3� Apply the mCP and check the resulting SCC for a

spanning cluster.
�4� If a spanning cluster does not exist EXIT. If a span-

ning cluster exists, restore the lattice to the IC and go to 1.
The final value of k found in this way, kc, gives the m-BP

threshold,

pc = 1 −
kc

N
. �1�

Now we present an avalanche algorithm, ABP1, which
also finds pc exactly. This procedure was originally intro-
duced by Manna �6�, though the way he calculated pc from it
contains a misconception which is easily corrected as shown
below. The procedure is similar to the BP procedure above,
except that the lattice is not restored to the IC after each trial.

Procedure 2 (ABP1 procedure for finding pc�. Start with
the same IC as for the BP procedure and define a time vari-
able, t←0.

�1� Burn �remove� the site on the SCC with the lowest
label, k�. t← t+1.

�2� Apply the m-culling procedure and check the result-
ing SCC for a spanning cluster.

�3� If a spanning cluster exists, go to 1. If a spanning
cluster does not exist EXIT.

The values of k� and t when the algorithm exits are re-
ferred to as kc� and tc, respectively.

In the ABP1 procedure the index t counts the number of
sites which die �i.e., are removed� before percolation ceases.
Our definition of tc is equivalent to Nfc

* as defined by Manna
�6�, who goes on to argue that pc=1− fc

*, which we prove to
be generally false below. Data are presented in Sec. III to
further demonstrate this fact. For a given IC the m core after
the removal of the site labeled n in the ABP1 procedure is
the same as that produced after the nth loop of the BP pro-
cedure. This implies pc�1− tc /N.

The equivalence of BP and ABP1 is evident from the
Abelian nature of bootstrap percolation �6�. That is, bootstrap
percolation involves two processes, the first is random site
removal �which is equivalent to death or burning� and the
second is culling. There are then two ways in which boot-
strap percolation is Abelian. First, it does not matter the or-
der in which unstable sites are culled. Second, it does not
matter the order in which sites are removed. The final state is
only determined by the list of n sites removed and the cull-
ing, in arbitrary order, of all unstable sites. In other words,
the SCC does not depend on the path taken to reach the final
stable state. There is, however, a subtle difference between
BP and ABP1, which arises due to the fact that ABP1 in-
cludes the possibility of removing a site, which we label a
redundant site, that has already been culled at an earlier stage
of the algorithm. Exact counting of these redundant sites,
R�t�, is key to a correct correspondence between conven-
tional bootstrap percolation and bootstrap avalanches. Before
calculating the number of redundant sites, we introduce a
third algorithm that is more efficient than ABP1.

The ABP1 procedure as presented above is inefficient be-
cause a breadth first search is required to test for percolation
after each step in the procedure. Generally a half-interval
search technique is employed to find pc using the BP proce-
dure �19� and a similar technique can be used with the ABP1
procedure. In the ABP1 case, the lattice is completely evacu-
ated using the ABP1 procedure without checking for perco-
lation and each site in an avalanche is given the label of the
avalanche seed site. These avalanche clusters are then added
or removed from the lattice using a half-interval search to
locate kc.

In terms of storage, giving every site a random label, as
required by the ABP1 procedure, is also memory inefficient.
To avoid using an integer label on each site, we instead de-
fine each site to be either present, culled, or burned. Burned
sites are those which seed a culling avalanche. Present sites
contribute to the SCC. A site that is not present is referred to
as absent. A site can be made absent by being culled or by
being burned.

Using these definitions, we define a more efficient imple-
mentation of the avalanche algorithm, which we call ABP2.
We assign to each site two binary variables, bi=0,1 and
ci=0,1. If bi=1, a site has been burned and if ci=1, a site
has been culled. A site is present if bi=0 and ci=0.

Procedure 3 (ABP2 for finding pc�. For a given lattice
with N sites, start with bi=0 and ci=0 for every site and set
t=0 and R�0�=0.

�1� From the set of sites with bi=0 randomly choose one,
label it j, and set its value to bj =1. That is, burn that site. If
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that site has already been culled �i.e., cj =1� set R�t�
=R�t�+1 and return to 1. If site j has not been culled,
t← t+1, set R�t�=R�t−1� and proceed to 2.

�2� Apply mCP and for any site that is culled in this ava-
lanche set ci=1. The number of sites which are culled in this
avalanche is a�t�.

�3� If a spanning cluster exists, go to 1. If a spanning
cluster does not exist EXIT.

The function R�t�, the number of redundant burns, is the
number of times that the procedure tries to burn a site that is
already culled at a time up to and including time t, and plays
an important role in determining the relation between ABP
and BP. In particular, the redundant sites are sites that would
have been removed in the random dilution process that pre-
cedes the usual mCP in BP. The total number of burned sites
is then B�t�= t+R�t�, so that

1 − p =
B�t�
N

=
1

N
�t + R�t�� =

k

N
, �2�

which gives the relation between BP, ABP1, and ABP2. The
total number of culled sites is given by

C�t� = �
0

t

a�t�dt , �3�

and the number of redundant burns at time t is

r�t� =
dR�t�

dt
. �4�

The ABP2 procedure requires at least two bits of storage for
each site. This is twice as much as BP done with the multi-
spin coding technique �20,21�, but it is comparable in terms
of speed. It will be shown below that for continuous BP
systems the avalanche size stays relatively small throughout
the ABP procedure. Since only the neighborhood of the ava-
lanche is checked against the culling condition the average
time spent in generating a culling avalanche is typically
O�1�. Thus, using a half-interval search technique it takes
O�N� time to evacuate the lattice and an additional
O(N ln�N�) time to find pc for a given IC. The total time is
O(N ln�N�), which includes the time �O�N�� it takes to label
the clusters of the SCC �22�.

It would be useful if the ABP procedure could identify the
bootstrap percolation point without the use of a half-interval
search, and this was the reason that Manna originally intro-
duced the procedure �6�. Such an analysis would not require
the costly identification of percolation clusters and would
require O�N� time to record the relevant avalanche informa-
tion of the system. We show in Sec. III that in the case of
first order transitions it is possible to identify pc quite accu-
rately from the ABP avalanches; however, it is more difficult
for second order bootstrap cases.

The procedures as defined above terminate once the lat-
tice no longer percolates. However, we are also interested in
the avalanches after percolation and in the data presented in
Sec. III we continue the ABP procedure until the lattices are
completely empty.

III. NUMERICAL RESULTS

Results for elementary avalanches in bootstrap percola-
tion for triangular and cubic lattices are presented in Figs.
1–4. The data are generated by starting with undiluted trian-
gular or simple cubic lattices and then applying the bootstrap
avalanche algorithm ABP2 until the lattice is empty. Results
are presented for the most interesting cases, m=3 and m=4.

The m=3 cases �Figs. 1 and 3�, which exhibit a second
order bootstrap percolation transition, display qualitatively
different behavior than the m=4 cases which have a sharp
first order bootstrap percolation transition �Figs. 2 and 4�. In
ABP the parameter t represents the number of “essential”
burned sites, i.e., the total number of burned sites minus the
redundant burned sites �i.e., t=k−R�t��. We will often refer
to t or �= t /N as the time parameter and �=k /N is related to
the conventional bootstrap percolation concentration p
through p=1−�.

Figures 1�a�, 2�a�, 3�a�, and 4�a� show the deviation
between the time parameter � and �. The difference
�−�=R�t� /N is the number density of redundant burn opera-
tions. In these figures the vertical and horizontal dashed lines
indicate the percolation threshold. For the triangular lattice
with m=3 �Fig. 1�a�� pc=0.6291�5� �14� and is consistent
with the value �c=1− pc=0.372�2� found from our simula-
tions. The value of �c=0.338�2� we find indicates that
at threshold the number of redundant sites removed R�t� /N
=�c−�c=0.034�4�. This is the error incurred in using �c in-
stead of �c to find the bootstrap threshold using the ABP
algorithm. The total number of burn operations, followed by
culling, required to empty the lattice is � f = tf /N=0.3832�2�.
This final time is quite precise for second order bootstrap
problems. For the m=3 cubic lattice case, which is also sec-
ond order �see Fig. 3�a�� we find �c=0.427�2�, �c=0.369�1�,
and � f =0.381�1�. The percolation threshold value of
pc=1−�c=0.573�2� is consistent with estimates found using
conventional procedures �2,3,11,16�. The first order cases
clearly show a different behavior than the second order
cases. Instead of an upturn in � vs � �Figs. 2�a� and 4�a��,
there is a downturn. This is due to the fact that there is
considerable variability in � f for the first order cases. For
each configuration there is a large avalanche that evacuates
the lattice, and for a single configuration �=� to a good
approximation up to � f =�c. These cases are known to have
very strong size effects, so that although the value of
�c=1− pc is found to be finite in Figs. 2�a� and 4�a�, it is
expected that �c→0 logarithmically in the large lattice limit
�7–10�.

The cummulative culling avalanche distributions are pre-
sented in Figs. 1�b�, 2�b�, 3�b�, and 4�b�. In the first order
cases �Figs. 2�b� and 4�b�� the avalanche distribution is broad
and has a power law tail, while in the second order cases
�Figs. 1�b� and 3�b�� the avalanche distribution has an expo-
nential tail and most avalanches have finite size. We have
searched for an indication of the onset of percolation in the
tails of these distributions and have found no clear indicator
of new behavior near pc. For example, it is evident from Fig.
3�b� that even at pc the culling avalanche distribution is not a
power law in this second order case. In second order cases,
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FIG. 1. �Color online� Bootstrap avalanche behavior for m=3 on
a triangular lattice of size L=1024 with periodic boundary condi-
tions. �a� The number of burned sites B�t� /N=� �solid line� as a
function of the normalized time parameter �= t /N. The angled
dashed line corresponds to �=�, so that the difference between this
dashed line and the solid line is the number of redundant burned
sites R��� /N—see Eq. �2�. �b� The cumulative avalanche distribu-
tion Na��� for a range of values of � as indicated in the legend. The
data are well described by Eq. �5�. The solid line is a fit of the
�−0.38 data using Eq. �5� with c1���=9.0�10−08, x���=0.88, and
c2���=0.105. �c� The average avalanche size as a function of �. The
vertical and horizontal dashed lines in �a� and �c� give the location
of the critical point �c=0.338�2� and �c=0.372�2�.

FIG. 2. �Color online� Bootstrap avalanche behavior for m=4 on
a triangular lattice of size L=1024 with periodic boundary condi-
tions. �a� The number of burned sites B�t� /N=� �solid line� as a
function of the normalized time parameter �= t /N. The dashed line
is the curve �=�. The downturn for large � is due to strong fluc-
tuations in � f. The vertical and horizontal dashed lines give the
location of the critical point at �c=0.056�3�=�c. �b� The cumulative
avalanche distribution Na��� for a range of values of � as indicated
in the legend. The data are well described by Eq. �6�. The solid line
is a fit of the � f =0.06 data using Eq. �6� with c3���=7.7�10−07 and
y���=2.54�4�. �c� The average avalanche size as a function of �.
The vertical dashed line gives the location of the critical point. The
steplike nature of the distribution is due to the occurence of exten-
sive avalanches which are not included in the power law distribu-
tion presented in �b�.
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we found that the cummulative distribution is well described
by the function

Na��� = c1���a−x���exp�− c2���a� �5�

and fits to this equation are presented in Figs. 1�b� and 3�b�.
In the first order cases �Figs. 2�b� and 4�b��, the tail of the
cummulative culling distribution is a power law, with an ex-
ponent that varies with �, so that

Na��� = c3���a−y��� �6�

where y��� is larger for small �. However, we find that at the
completion, the exponent y�� f� is close to the value 5/2 for
the m=4 cases on both the triangular and cubic lattices.

Figures 1�c�, 2�c�, and 3�c� present the average avalanche
size as a function of �. In the first order cases �e.g., Fig. 2�c��,
the average avalanche size is completely dominated by an
extensive avalanche so that the average avalanche size is

FIG. 3. �Color online� Bootstrap avalanche behavior for m=3 on
a cubic lattice of size L=128 with periodic boundary conditions. �a�
The number of burned sites B�t� /N=� �solid line� as a function of
the normalized time parameter �= t /N. The dashed line is the curve
�=� so that the difference between the dashed and solid lines is the
number of redundant burned sites R��� /N, see Eq. �2�. �b� The
cumulative avalanche distribution Na��� for a series of values of �
as indicated in the legend. The data are well described by Eq. �5�.
The solid line is a fit of the �=0.38 data using Eq. �5� with c1���
=7.2�10−08, x���=0.62�1�, and c2���=0.107. �c� The average ava-
lanche size a��� as a function of �. The vertical and horizontal
dashed lines in �a� and �c� give the location of the critical point
�c=0.369�1� and �c=0.427�2�.

FIG. 4. �Color online� Bootstrap avalanche behavior for m=4 on
a cubic lattice of size L=128 with periodic boundary conditions. �a�
The number of burned sites B�t� /N=� �solid line� as a function of
the normalized time parameter �= t /N. The dashed line is the curve
�=�. The downturn at large � is due to strong fluctuations in � f. The
vertical and horizontal dashed lines give the location of the critical
point, �c=�c=0.096�1�. �b� The cumulative avalanche distribution
Na��� for a series of values of � as indicated in the legend. The data
are well described by Eq. �6�. The data are well described by a
power law; for example, the solid line is a fit of the �=0.10 data
using Eq. �6� with c3���=7.9�10−08 and y���=2.6�2�.
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large once one sample in the set exhibits its extensive ava-
lanche. In contrast, in the second order cases �Figs. 1�c� and
3�c�� the average avalanche size is a relatively smooth func-
tion of �. We have found no indication of pc in a��� from
data such as this. In addition we looked at the fluctuations of
a���, which is the avalanche susceptibility and also found no
evidence of criticality.

A clear demonstration of the difference between first or-
der and second order bootstrap culling avalanches is pre-
sented in Fig. 5, which shows the size of the largest ava-
lanche as a function of the inverse of the system size L. In
the second order cases �m=3 triangular and cubic lattices�
the largest avalanche grows logarithmically with system size
�amax�	 ln L, while in the first order cases �m=4 triangular
and cubic lattices� the largest culling avalanche is propor-
tional to the volume �amax�	Ld.

Another interesting feature of the cummulative distribu-
tions presented in Figs. 1�a�–3�b� is the presence of a non-
monotonic behavior at small avalanche sizes. This is due to
small stable clusters and for the second order cases become
more pronounced for ���c. In particular for the triangular
lattice with m=3 �Fig. 1�b�� there is a peak at a=6, which is
due to removing a site from a hexagonal cluster. The hex-
agonal cluster is the smallest stable finite cluster for m=3
triangular lattices. This is the most prevalent cluster in the
SCC as the system approaches � f. Burning any site in this
cluster leads to the culling of the whole cluster and a culling
avalanche of size 6. The peaks at a=9, 11, 13, and 15 are
similarly associated with stable clusters of size 10, 12, 14,
and 16. Figure 6 shows the �small� clusters of size 7 and 10
that lead to avalanches of sizes 6 and 9, respectively. The
10-cluster gives an avalanche of size 9 if a gray site is re-
moved. Any other removed site leads to an avalanche of size
2 and leaves a stable 7-cluster behind. Similarly for the cubic
lattice the smallest stable cluster for m=3 is a cube of eight
sites. This cluster leads to a peak in the avalanche distribu-
tion at an avalanche size of 7. As remarked above the onset
of an extensive avalanche heralds the percolation threshold

in first order bootstrap percolation problems. This enables
identification of the bootstrap threshold from the ABP algo-
rithm, as suggested by Manna �6�. However, we found that
the largest culling avalanche does not necessarily occur near
the bootstrap threshold in second order bootstrap problems.
Similarly the peak in the average size of the culling ava-
lanches does not occur at �c �see Figs. 1�c� and 3�c��. How-
ever, the nonmonotonic behavior of the avalanche distribu-
tion which occurs even in second order cases is indicative of
the correlated nature of bootstrap percolation culling process.
We tested whether the peaks in the cummulative distribution
have a behavior which changes its nature at the bootstrap
percolation threshold. Figure 7 shows three probability
curves for m=3 on a triangular lattice. The solid curve shows
the probability of having an avalanche of size 6, P6���. The
dotted curve shows the probability that an avalanche of size
6 occurs on the largest cluster. The initial rise of the curve
represents the increasing likelihood of having a nonzero ava-
lanche as the SCC becomes less stable to burning and cull-
ing. The sharp decline is due to the imminent fractal struc-
ture of the SCC. Larger avalanches are becoming much more
likely around the maximum of this curve. We can define the
percolation threshold as the point of inflection in this curve
right after the maximum. This is analogous to the definition
of pc through the probability of finding a site on the largest
cluster in scalar percolation.

The dashed curve shows the probability of having an ava-
lanche of size 6 on any cluster but the largest. An interesting

FIG. 5. �Color online� Finite size scaling behavior of the largest
culling avalanche for �starting from the bottom of the figure�
m=3 on a triangular lattice, m=3 on a cubic lattice, m=4 on a
triangular lattice, and m=4 on a cubic lattice. The m=3 triangular
case scales logarithmically with size, while the m=4 cases scale
with Ld, where d is is the spatial dimension.

FIG. 6. The stable 7 and 10 clusters for m=3 on a triangular
lattice. When a site on the 7 cluster is burnt a culling avalanche of
size 6 results. When a black site on the 10 cluster is burnt a culling
avalanche of size 2 occurs, while if a gray site on the 10 cluster is
burnt an avalanche of size 9 results.
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feature of Fig. 7 is the intersection of the latter two curves.
At this point there is equal likelihood of having an avalanche
of size 6 from the largest cluster as from all other clusters.
After this crossover the majority of avalanches of size 6
come from smaller clusters. This crossover occurs very near
the BP percolation threshold. Unfortunately, this analysis re-
quires one to label percolation clusters in order to identify
the largest one. After �c �p� pc� the SCC, especially the
largest cluster, is fractal. Any avalanche on the largest cluster
is likely to be large, so small avalanches will likely occur on
smaller clusters. For m=3 on a cubic lattice, one sees the
same crossover at the critical point when considering the
contributions to the probability of having an avalanche of

size 7, as the smallest stable cluster has eight sites.

IV. DISCUSSION

We have analyzed the behavior of culling avalanches
which occur after the death of a single site, in networks
where a site is stable provided it has a minimum coordina-
tion of m. The culling avalanche distributions for m=3 cases
on triangular and cubic lattices are qualitatively different
than for m=4 cases on these lattices. For m=3 the culling
avalanches have an exponential size distribution �see Figs.
1�b� and 3�b� and Eq. �5�� and the largest avalanche grows as
a logarithm of the sample size �see Fig. 5�. In contrast the
m=4 cases have a power law size distribution �see Figs. 2�b�
and 4�b� and Eq. �6�� and the largest avalanche grows as the
volume of the network �see Fig. 5�. The exponent describing
the cummulative avalanche distribution at completion is
close to 5/2 for the m=4 cases on both the triangular and
cubic lattices.

We demonstrated that there is an exact relation between
the avalanches in bootstrap percolation and the conventional
bootstrap percolation point �see Eq. �2��, which requires that
we keep account of the number of redundant burnt sites R�t�.
In first order bootstrap problems, the onset of percolation is
marked by the occurrence of an extensive culling avalanche,
while in second order cases this does not occur. In the second
order cases, we have used a half-interval search to locate pc,
as we did not find any clear change in the behavior of the
culling avalanches or avalanche size at pc.
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